Existence and multiplicity of solutions for Kirchhoff type problems with parameter
نویسندگان
چکیده
منابع مشابه
Multiplicity of Nontrivial Solutions for Kirchhoff Type Problems
Copyright q 2010 Bitao Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. By using variational methods, we study the multiplicity of solutions for Kirchhoff type problems −a b Ω |∇u| 2 Δu f x, u, in Ω; u 0, on ∂Ω. Existe...
متن کاملExistence and multiplicity of solutions for a class of fractional Kirchhoff-type problem∗
In this paper, we establish the existence and multiplicity of solutions to the following fractional Kirchhoff-type problem M(∥u∥)(−∆)u = f(x, u(x)), in Ω u = 0 in R\Ω, where N > 2s with s ∈ (0, 1), Ω is an open bounded subset of R with Lipschitz boundary, M and f are two continuous functions, and (−∆) is a fractional Laplace operator. Our main tools are based on critical point theorems and the ...
متن کاملExistence and multiplicity of positive solutions for a class of p(x)-Kirchhoff type equations
* Correspondence: [email protected] Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China Abstract In this article, we study the existence and multiplicity of positive solutions for the Neumann boundary value problems involving the p(x)-Kirchhoff of the form ⎪⎨⎪⎩ −M (∫ 1 p(x) (|∇u|p(x) + λ|u|p(x))dx ) (div (|∇u|p(x)−2∇u) − λ|u|p(x)−2u) = f (x, u) in , ∂u ∂v = 0...
متن کاملExistence of Infinitely Many Solutions for Perturbed Kirchhoff Type Elliptic Problems with Hardy Potential
In this article, by using critical point theory, we show the existence of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic problems with Hardy potential.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations & Applications
سال: 2016
ISSN: 1847-120X
DOI: 10.7153/dea-08-31